Applied Microbiology and Biotechnology 2004-05-01

Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6.

S J Brooks, E M Doyle, C Hewage, J P G Malthouse, W Duetz, K E O' Connor

Index: Appl. Microbiol. Biotechnol. 64(4) , 486-92, (2004)

Full Text: HTML

Abstract

Crude cell extracts of Pseudomonas putida F6 transformed 4-substituted fluoro-, chloro-, bromo- and iodo-phenol without the exogenous addition of cofactors. The rate of substrate consumption decreased with increasing substituent size (F>Cl>Br>I). Biotransformations resulted in greater than 95% utilisation of the halogenated substrate. Product accumulation was observed in incubations with 4-chloro, 4-bromo- and 4-iodo-phenol. These products were identified as the corresponding 4-substituted catechols. Transformation of 4-fluorophenol did not result in the accumulation of the corresponding catechol; however, manipulation of the reaction conditions by incorporation of ascorbic acid culminated in the formation of 4-fluorocatechol. Cell extracts of P. putida F6 also showed activity towards a 3-substituted phenol, namely 3-fluorophenol, resulting in the formation of a single product, 4-fluorocatechol.Copyright 2003 Springer-Verlag


Related Compounds

Related Articles:

Convenient QSAR model for predicting the complexation of structurally diverse compounds with β-cyclodextrins

2009-01-01

[Bioorg. Med. Chem. 17 , 896-904, (2009)]

Liver protein targets of hepatotoxic 4-bromophenol metabolites.

2012-08-20

[Chem. Res. Toxicol. 25(8) , 1777-86, (2012)]

Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk).

2005-05-05

[J. Med. Chem. 48 , 3269-79, (2005)]

Developing structure-activity relationships for the prediction of hepatotoxicity.

2010-07-19

[Chem. Res. Toxicol. 23 , 1215-22, (2010)]

A predictive ligand-based Bayesian model for human drug-induced liver injury.

2010-12-01

[Drug Metab. Dispos. 38 , 2302-8, (2010)]

More Articles...