A flow injection biosensor system for highly sensitive detection of 2,4,6-trichlorophenol based on preoxidation by ceric sulfate.
Toshio Yao, Kazuya Kotegawa
Index: Anal. Sci. 19(6) , 829-33, (2003)
Full Text: HTML
Abstract
A flow injection biosensor system was proposed for the highly sensitive detection of 2,4,6-trichlorophenol (2,4,6-TCP). The system is based on the preoxidation by ceric sulfate to the corresponding benzoquinone (2,6-dichloro-1,4-benzoquinone: 2,6-DC-1,4-BQ), which was characterized using cyclic voltammetry, hydrodynamic voltammetry, and UV-vis spectrophotometry. The laccase-based biosensor used in this analytical system responded sensitively to 2,4,6-TCP after the preoxidation by ceric sulfate. The response could be based on the bioelectrocatalytic recycling of oxidation product (2,6-DC-1,4-BQ) between laccase membrane and the electrode, because the oxidation product (2,6-DC-1,4-BQ) of 2,4,6-TCP was an electrochemically reversible redox species. The signal current was linearly related to the 2,4,6-TCP concentrations in a dynamic range of 2 nM - 2 microM; the slope and the y-intercept of the straight line were 1150 nA microM(-1) and 0.88 nA, respectively. The detection limit was 1.2 nM (S/N = 3) for a 20 microl injection. Among a variety of chlorophenols and some phenolic compounds, the only interferent was 2,4-dichlorophenol.
Related Compounds
Related Articles:
Differential in vitro inhibition studies of some cerium vanadate derivatives on xanthine oxidase.
2015-04-01
[J. Enzyme Inhib. Med. Chem. 30(2) , 286-9, (2015)]
2015-02-01
[Chem. Biodivers. 12(2) , 289-94, (2015)]
Oxidation, deformation, and destruction of carbon nanotubes in aqueous ceric sulfate.
2005-02-03
[J. Phys. Chem. B 109(4) , 1400-7, (2005)]
Investigation of the NMR relaxation rate dose-response of a ceric sulphate dosimeter.
2002-06-01
[Appl. Radiat. Isot. 56(6) , 895-9, (2002)]
2008-11-01
[Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 71(1) , 204-8, (2008)]