Journal of Agricultural and Food Chemistry 2011-05-11

Thermal generation of 3-amino-4,5-dimethylfuran-2(5H)-one, the postulated precursor of sotolone, from amino acid model systems containing glyoxylic and pyruvic acids.

Paula Vanessa Guerra, Varoujan A Yaylayan

Index: J. Agric. Food Chem. 59(9) , 4699-704, (2011)

Full Text: HTML

Abstract

4,5-Dimethyl-3-hydroxy-2(5H)-furanone (sotolone), a naturally occurring flavor impact compound, can be isolated from various sources, especially fenugreek seeds. It can also be thermally produced from intermediates generated from the Maillard reaction such as pyruvic and ketoglutaric acids, glyoxal, and 2,3-butanedione. A naturally occurring precursor of sotolone, 3-amino-4,5-dimethyl-2(5H)-furanone, was thermally generated for the first time from pyruvic acid and glycine or from glyoxylic acid and alanine model systems. Isotope labeling studies have implicated 4,5-dimethylfuran-2,3-dione as an intermediate that can be converted into 3-amino-4,5-dimethyl-2(5H)-furanone through Strecker-like interaction with any amino acid. Furthermore, these studies have also indicated the presence of two pathways for the formation of 4,5-dimethylfuran-2,3-dione, one requiring pyruvic acid and a formaldehyde source and the other requiring glyoxylic acid and acetaldehyde. Self-aldol condensation of pyruvic acid followed by lactonization and further aldol reaction with formaldehyde can generate the same intermediate as the self-aldol addition product of acetaldehyde with glyoxylic acid followed by lactonization. The pyruvic acid pathway was found to be a more efficient route than the glyoxylic acid pathway. Furthermore, the pyruvic acid/glycine model system was able to generate sotolone in the presence of moisture, and in the presence of ammonia, commercial sotolone was converted back into 3-amino-4,5-dimethyl-2(5H)-furanone.


Related Compounds

Related Articles:

Prooxidant action of furanone compounds: implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.

2007-07-01

[Food Chem. Toxicol. 45(7) , 1258-62, (2007)]

Quantitative determination of sotolon, maltol and free furaneol in wine by solid-phase extraction and gas chromatography-ion-trap mass spectrometry.

2003-08-22

[J. Chromatogr. A. 1010(1) , 95-103, (2003)]

3-Hydroxy-4,5-dimethyl-2(5H)-furanone (Sotolon) causing an off-flavor: elucidation of its formation pathways during storage of citrus soft drinks.

1999-08-01

[J. Agric. Food Chem. 47(8) , 3288-91, (1999)]

French Jura flor yeasts: genotype and technological diversity.

2009-03-01

[Antonie van Leeuwenhoek 95(3) , 263-73, (2009)]

4,5-dimethyl-3-hydroxy-2[5H]-furanone (sotolone)--the odour of maple syrup urine disease.

1999-04-01

[J. Inherit. Metab. Dis. 22(2) , 107-14, (1999)]

More Articles...