PLoS ONE 2013-01-01

Impairment of autophagic flux promotes glucose reperfusion-induced neuro2A cell death after glucose deprivation.

Bong Geom Jang, Bo Young Choi, Jin Hee Kim, Min-Ju Kim, Min Sohn, Sang Won Suh

Index: PLoS ONE 8(10) , e76466, (2013)

Full Text: HTML

Abstract

Hypoglycemia-induced brain injury is a common and serious complication of intensive insulin therapy experienced by Type 1 diabetic patients. We previously reported that hypoglycemic neuronal death is triggered by glucose reperfusion after hypoglycemia rather than as a simple result of glucose deprivation. However, the precise mechanism of neuronal death initiated by glucose reperfusion is still unclear. Autophagy is a self-degradation process that acts through a lysosome-mediated trafficking pathway to degrade and recycle intracellular components, thereby regulating metabolism and energy production. Recent studies suggest that autophagic and lysosomal dysfunction leads to abnormal protein degradation and deposition that may contribute to neuronal death. Here, we focused on the relationship between autophagy and lysosomal dysfunction in hypoglycemia-induced neuronal death. In neuronal cells, glucose reperfusion after glucose deprivation resulted in inhibition of autophagy, which may promote cell death. This cell death was accompanied with activation of caspase3 and the lysosomal proteases cathepsin B and D, which indicated impairment of autophagic flux. Taken together, these results suggest that interplay of autophagy, caspase3 activation and lysosomal proteases serve as a basis for neuronal death after hypoglycemia. Thus, we provide the molecular mechanism of neuronal death by glucose reperfusion and suggest some clues for therapeutic strategies to prevent hypoglycemia-induced neuronal death.


Related Compounds

Related Articles:

4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway.

2013-02-08

[Toxicology 304 , 13-20, (2013)]

Cathepsin C is a tissue-specific regulator of squamous carcinogenesis.

2013-10-01

[Genes Dev. 27(19) , 2086-98, (2013)]

Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity.

2014-03-01

[Toxicol. Lett. 226(2) , 228-35, (2014)]

Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release.

2013-01-01

[Cell Death Dis. 4 , e507, (2013)]

Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins.

2012-12-01

[Biol. Chem. 393(12) , 1405-16, (2012)]

More Articles...