Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles.
Dong Chen, Maria M Santore
Index: Proc. Natl. Acad. Sci. U. S. A. 111(1) , 179-84, (2014)
Full Text: HTML
Abstract
Model phospholipid membranes and vesicles have long provided insight into the nature of confined materials and membranes while also providing a platform for drug delivery. The rich thermodynamic behavior and interesting domain shapes in these membranes have previously been mapped in extensive studies that vary temperature and composition; however, the thermodynamic impact of tension on bilayers has been restricted to recent reports of subtly reduced fluid-fluid transition temperatures. In two-component phosphatidylcholine unilamellar vesicles [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)], we report a dramatic influence of tension on the fluid-solid transition and resulting phases: At fixed composition, systematic variations in tension produce differently shaped solid domains (striped or irregular hexagons), shift fluid-solid transition temperatures, and produce a triple-point-like intersection of coexistence curves at elevated tensions, about 3 mN/m for 30% DOPC/70% DPPC. Tension therefore represents a potential switch of microstructure in responsive engineered materials; it is an important morphology-determining variable in confined systems, and, in biological membranes, it may provide a means to regulate dynamic structure.
Related Compounds
Related Articles:
2015-04-22
[J. Ethnopharmacol. 164 , 229-38, (2015)]
2015-02-11
[J. Neurosci. 35(6) , 2384-97, (2015)]
2015-05-01
[J. Virol. 89(10) , 5714-23, (2015)]
2014-07-01
[Autophagy 10(7) , 1241-55, (2014)]
2014-09-01
[Am. J. Pathol. 184(9) , 2403-19, (2014)]