Journal of the American Society for Mass Spectrometry 2002-10-01

Fragmentation of deprotonated ions of oligodeoxynucleotides carrying a 5-formyluracil or 2-aminoimidazolone.

Yinsheng Wang, Lijie Men, Shetty Vivekananda

Index: J. Am. Soc. Mass Spectrom. 13(10) , 1190-4, (2002)

Full Text: HTML

Abstract

2-Aminoimidazolone and 5-formyluracil are major one-electron photooxidation products of guanine and thymine in oligodeoxynucleotides (ODNs). Herein we report the HPLC isolation and tandem mass spectrometric characterization of ODNs carrying those types of base modifications. Collision-activated dissociation (CAD) of the deprotonated ODN ions leads to cleavages of the 3' C-O bond adjacent to the modification site, which provides enough information for locating the sites of modification. The cleavage 3' to 5-formyl-2'-deoxyuridine is in contrast to the observation that there is no cleavage 3' to an unmodified thymidine under similar conditions. In addition we observed that at high charge states, the loss of 5-formyluracil as an anion and the resulting strand cleavage is predominant over cleavages at other sites.


Related Compounds

Related Articles:

Role of the Escherichia coli and human DNA glycosylases that remove 5-formyluracil from DNA in the prevention of mutations.

2001-03-01

[J. Radiat. Res. 42(1) , 11-9, (2001)]

Repair of the mutagenic DNA oxidation product, 5-formyluracil.

2003-02-03

[DNA Repair (Amst.) 2(2) , 199-210, (2003)]

Nucleotide excision repair of 5-formyluracil in vitro is enhanced by the presence of mismatched bases.

2004-03-16

[Biochemistry 43(10) , 2682-7, (2004)]

Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.

2003-05-06

[Biochemistry 42(17) , 5003-12, (2003)]

Induction of T --> G and T --> A transversions by 5-formyluracil in mammalian cells.

2002-01-15

[Mutat. Res. 513(1-2) , 213-22, (2002)]

More Articles...