PLoS Genetics 2014-05-01

Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans.

Arnaud Tauffenberger, J Alex Parker

Index: PLoS Genet. 10(5) , e1004346, (2014)

Full Text: HTML

Abstract

Glucose is a major energy source and is a key regulator of metabolism but excessive dietary glucose is linked to several disorders including type 2 diabetes, obesity and cardiac dysfunction. Dietary intake greatly influences organismal survival but whether the effects of nutritional status are transmitted to the offspring is an unresolved question. Here we show that exposing Caenorhabditis elegans to high glucose concentrations in the parental generation leads to opposing negative effects on fecundity, while having protective effects against cellular stress in the descendent progeny. The transgenerational inheritance of glucose-mediated phenotypes is dependent on the insulin/IGF-like signalling pathway and components of the histone H3 lysine 4 trimethylase complex are essential for transmission of inherited phenotypes. Thus dietary over-consumption phenotypes are heritable with profound effects on the health and survival of descendants.


Related Compounds

Related Articles:

Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice.

2015-04-01

[Acta Physiol. (Oxf.) 213(4) , 902-19, (2015)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents.

2015-03-01

[Tuberculosis (Edinb.) 95(2) , 155-61, (2015)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.

2014-01-01

[PeerJ 2 , e284, (2014)]

More Articles...