Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2010-02-03

Alkyltransferase-mediated toxicity of bis-electrophiles in mammalian cells.

Aley G Kalapila, Anthony E Pegg

Index: Mutat. Res. 684(1-2) , 35-42, (2010)

Full Text: HTML

Abstract

The primary function of O(6)-alkylguanine-DNA alkyltransferase (AGT) is to maintain genomic integrity in the face of damage by both endogenous and exogenous alkylating agents. However, paradoxically, bacterial and mammalian AGTs have been shown to increase cytotoxicity and mutagenicity of dihaloalkanes and other bis-electrophiles when expressed in bacterial cells. We have extended these studies to mammalian cells using CHO cells that lack AGT expression and CHO cells stably transfected with a plasmid that expresses human AGT. The cytotoxicity of 1,2-dibromoethane, dibromomethane and epibromohydrin was significantly increased by the presence of AGT but cytotoxicity of butadiene diepoxide was not affected. Mutations caused by these agents were assessed using hypoxanthine-guanine phosphoribosyltransferase (HPRT) as a reporter gene. There was a small (c. 2-3-fold) but statistically significant AGT-mediated increase in mutations caused by 1,2-dibromoethane, dibromomethane and epibromohydrin. Analysis of the mutation spectrum induced by 1,2-dibromoethane showed that the presence of AGT also altered the types of mutations with an increase in total base substitution mutants due to a rise in transversions at both G:C and A:T sites. AGT expression also led to mutations arising from the transcribed strand, which were not seen in cells lacking AGT. Although the frequency of deletion mutations was decreased by AGT expression, the formation of large deletions (> or = 3 exons) was increased. This work demonstrates that interaction of AGT with some bis-electrophiles can cause mutagenicity and diminished cell survival in mammalian cells. It is consistent with the hypothesis that DNA-AGT cross-links, which have been characterized in experiments with purified AGT protein and such bis-electrophiles, can be formed in mammalian cells.Copyright 2009 Elsevier B.V. All rights reserved.


Related Compounds

Related Articles:

Synthesis and evaluation of candidate PET radioligands for corticotropin-releasing factor type-1 receptors.

2014-07-01

[Nucl. Med. Biol. 41(6) , 524-35, (2014)]

Improved quality control of [18F]fluoromethylcholine.

2011-11-01

[Nucl. Med. Biol. 38(8) , 1143-8, (2011)]

Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.

2008-07-03

[J. Phys. Chem. A 112(26) , 5908-16, (2008)]

Episodic trihalomethane species and levels in tap water at a start of operation of advanced treatment in Osaka Prefectural water supplies.

2009-11-01

[Bull. Environ. Contam. Toxicol. 83(5) , 674-6, (2009)]

Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles.

2007-02-01

[Water Res. 41(4) , 875-83, (2007)]

More Articles...