A thermostable L-aminoacylase from Thermococcus litoralis: cloning, overexpression, characterization, and applications in biotransformations.
Helen S Toogood, Edward J Hollingsworth, Rob C Brown, Ian N Taylor, Stephen J C Taylor, Ray McCague, Jennifer A Littlechild
Index: Extremophiles 6(2) , 111-22, (2002)
Full Text: HTML
Abstract
A thermostable L-aminoacylase from Thermococcus litoralis was cloned, sequenced, and overexpressed in Escherichia coli. The enzyme is a homotetramer of 43 kDa monomers and has an 82% sequence identity to an aminoacylase from Pyrococcus horikoshii and 45% sequence identity to a carboxypeptidase from Sulfolobus solfataricus. It contains one cysteine residue that is highly conserved among aminoacylases. Cell-free extracts of the recombinant enzyme were characterized and were found to have optimal activity at 85 degrees C in Tris-HCl at pH 8.0. The recombinant enzyme is thermostable, with a half-life of 25 h at 70 degrees C. Aminoacylase inhibitors, such as mono-tert-butyl malonate, had only a slight effect on activity. The enzyme was partially inhibited by EDTA and p-hydroxymercuribenzoate, suggesting that the cysteine residue and a metal ion are important, but not essential, for activity. Addition of Zn2+ and Co2+ to the apoenzyme increased the enzyme activity, whereas Sn4+ and Cu2+ almost completely abolished enzyme activity. The enzyme was most specific for substrates containing N-benzoyl- or N-chloroacetyl-amino acids. preferring substrates containing hydrophobic, uncharged, or weakly charged amino acids such as phenylalanine, methionine, and cysteine.
Related Compounds
Related Articles:
2003-06-18
[J. Agric. Food Chem. 51(13) , 3695-703, (2003)]
Formation of high-aspect-ratio helical nanorods via chiral self-assembly of fullerodendrimers. Hilmer AJ, et al.
[J. Phys. Chem. Lett. 5(5) , 929-34, (2014)]
Facile Preparation and Purification of Mono tert-Butyl Malonate. Tararov VI, et al.
[Synth. Commun. 36(2) , 187-91, (2006)]