Biological & Pharmaceutical Bulletin 2014-01-01

Hyper-O-GlcNAcylation inhibits the induction of heat shock protein 70 (Hsp 70) by sodium arsenite in HeLa cells.

Yuri Miura, Takatoshi Sato, Yoko Sakurai, Ryo Sakai, Wakako Hiraoka, Tamao Endo

Index: Biol. Pharm. Bull. 37(8) , 1308-14, (2014)

Full Text: HTML

Abstract

O-Linked β-N-acetylglucosamine-modification (O-GlcNAcylation) is a reversible, post-translational, and regulatory modification of nuclear, mitochondrial, and cytoplasmic proteins that is responsive to cellular stress. However, the role of O-GlcNAcylation in the induction of heat shock proteins (Hsps) by arsenite remains unclear. We used O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenyl carbamate (PUGNAc), an inhibitor of O-GlcNAcase, and glucosamine (GlcN), an enhancer of the hexosamine biosynthesis pathway, or O-GlcNAc transferase (OGT) short interfering RNA (siRNA) to enhance or suppress cellular O-GlcNAcylation levels, respectively, in HeLa cells. The exposure to arsenite increased O-GlcNAcylation and Hsp 70 levels in HeLa cells. However, the pre-treatment with PUGNAc or GlcN, which enhanced O-GlcNAcylation levels, decreased the arsenite-induced expression of Hsp 70. The pre-treatment with OGT siRNA, which suppressed O-GlcNAcylation levels, did not affect the induction of Hsp 70. We then examined the effects of O-GlcNAcylation on the nuclear translocation and phosphorylation of heat shock factor 1 (HSF1), and found that neither the nuclear translocation nor phosphorylation of HSF1 was regulated by O-GlcNAcylation. Finally, Hsp 70 mRNA expression was induced by arsenite, whereas the addition of PUGNAc slightly suppressed its induction. These results indicate that O-GlcNAcylation is related to arsenite-induced Hsp 70 expression, and demonstrated that hyper-O-GlcNAcylation inhibited the induction of Hsp 70 via transcriptional factors instead of HSF1.


Related Compounds

Related Articles:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization.

2015-01-01

[J. Infect. Dis. 211(1) , 62-71, (2015)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

Use of an enzyme-assisted method to improve protein extraction from olive leaves.

2015-02-15

[Food Chem. 169 , 28-33, (2014)]

More Articles...