Journal of Physical Chemistry B 2014-11-26

Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

Yucui Hou, Jian Li, Shuhang Ren, Muge Niu, Weize Wu

Index: J. Phys. Chem. B 118(47) , 13646-50, (2014)

Full Text: HTML

Abstract

Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.


Related Compounds

Related Articles:

SPREDs (Sprouty related proteins with EVH1 domain) promote self-renewal and inhibit mesodermal differentiation in murine embryonic stem cells.

2015-04-01

[Dev. Dyn. 244(4) , 591-606, (2015)]

Progressive accumulation of activated ERK2 within highly stable ORF45-containing nuclear complexes promotes lytic gammaherpesvirus infection.

2014-04-01

[PLoS Pathog. 10(4) , e1004066, (2014)]

DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation.

2014-12-01

[J. Immunol. 193(11) , 5660-7, (2014)]

Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis.

2015-01-01

[PLoS ONE 10(2) , e0118336, (2015)]

Antiviral effect of methylated flavonol isorhamnetin against influenza.

2015-01-01

[PLoS ONE 10(3) , e0121610, (2015)]

More Articles...