Food Chemistry 2015-05-15

Inactivation of tannins in milled sorghum grain through steeping in dilute NaOH solution.

Adeoluwa I Adetunji, Kwaku G Duodu, John R N Taylor

Index: Food Chem. 175 , 225-32, (2015)

Full Text: HTML

Abstract

Steeping milled sorghum in up to 0.4% NaOH was investigated as a method of tannin inactivation. NaOH steeping substantially reduced assayable total phenols and tannins in both Type III and Type II sorghums and with Type III sorghum caused a 60-80% reduction in α-amylase inhibition compared to a 20% reduction by water steeping. NaOH treatment also reduced starch liquefaction time and increased free amino nitrogen. Type II tannin sorghum did not inhibit α-amylase and consequently the NaOH treatment had no effect. HPLC and LC-MS of the tannin extracts indicated a general trend of increasing proanthocyanidin/procyanidin size with increasing NaOH concentration and steeping time, coupled with a reduction in total area of peaks resolved. These show that the NaOH treatment forms highly polymerised tannin compounds, too large to assay and to interact with the α-amylase. NaOH pre-treatment of Type III sorghums could enable their utilisation in bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

2014-10-01

[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]

Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers.

2014-01-01

[Nat. Commun. 5 , 5491, (2014)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

Mucolipin 1 positively regulates TLR7 responses in dendritic cells by facilitating RNA transportation to lysosomes.

2015-02-01

[Int. Immunol. 27(2) , 83-94, (2015)]

More Articles...