Structure-Based Design of Macrocyclic Coagulation Factor VIIa Inhibitors.
E Scott Priestley, Daniel L Cheney, Indawati DeLucca, Anzhi Wei, Joseph M Luettgen, Alan R Rendina, Pancras C Wong, Ruth R Wexler
Index: J. Med. Chem. 58 , 6225-36, (2015)
Full Text: HTML
Abstract
On the basis of a crystal structure of a phenylpyrrolidine lead and subsequent molecular modeling results, we designed and synthesized a novel series of macrocyclic FVIIa inhibitors. The optimal 16-membered macrocycle was 60-fold more potent than an acyclic analog. Further potency optimization by incorporation of P1' alkyl sulfone and P2 methyl groups provided a macrocycle with TF/FVIIa Ki = 1.6 nM, excellent selectivity against a panel of seven serine proteases, and FVII-deficient prothrombin time EC2x = 1.2 μM. Discovery of this potent, selective macrocyclic scaffold opens new possibilities for the development of orally bioavailable FVIIa inhibitors.
Related Compounds
Related Articles:
2015-01-01
[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]
2015-05-01
[J. Virol. 89(10) , 5714-23, (2015)]
2015-01-01
[EMBO Mol. Med. 7(1) , 102-23, (2015)]
2014-01-01
[Nucleic Acids Res. 42(17) , e130, (2014)]
2015-02-01
[Hum. Mol. Genet. 24(3) , 698-713, (2015)]