AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa.
Calvin Ho-Fung Lau, Thomas Krahn, Christie Gilmour, Erin Mullen, Keith Poole
Index: Microbiologyopen 4(1) , 121-35, (2015)
Full Text: HTML
Abstract
AmgRS is an envelope stress-responsive two-component system and aminoglycoside resistance determinant in Pseudomonas aeruginosa that is proposed to protect cells from membrane damage caused by aminoglycoside-generated mistranslated polypeptides. Consistent with this, a ΔamgR strain showed increased aminoglycoside-promoted membrane damage, damage that was largely absent in AmgRS-activated amgS-mutant strains. Intriguingly, one such mutation, V121G, while providing for enhanced resistance to aminoglycosides, rendered P. aeruginosa susceptible to several ribosome-targeting nonaminoglycoside antimicrobials that are inducers and presumed substrates of the MexXY-OprM multidrug efflux system. Surprisingly, the amgSV 121G mutation increased mexXY expression threefold, suggesting that export of these nonaminoglycosides was compromised in the amgSV 121G mutant. Nonetheless, a link was established between AmgRS activation and mexXY expression and this was confirmed in studies showing that aminoglycoside-promoted mexXY expression is dependent on AmgRS. While nonaminoglycosides also induced mexXY expression, this was not AmgRS-dependent, consistent with these agents not generating mistranslated polypeptides and not activating AmgRS. The aminoglycoside inducibility of mexXY was abrogated in a mutant lacking the AmgRS target genes htpX and PA5528, encoding a presumed cytoplasmic membrane-associated protease and a membrane protein of unknown function, respectively. Thus, aminoglycoside induction of mexXY is a response to membrane damage and activation of the AmgRS two-component system.© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Related Compounds
Related Articles:
2015-01-01
[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]
2015-05-01
[J. Virol. 89(10) , 5714-23, (2015)]
2015-01-01
[EMBO Mol. Med. 7(1) , 102-23, (2015)]
2014-01-01
[Nucleic Acids Res. 42(17) , e130, (2014)]
2015-02-01
[Hum. Mol. Genet. 24(3) , 698-713, (2015)]