A TRPM4-dependent current in murine renal primary cilia.
Richard J Flannery, Nancy K Kleene, Steven J Kleene
Index: Am. J. Physiol. Renal Physiol. 309 , F697-707, (2015)
Full Text: HTML
Abstract
Defects in primary cilia lead to a variety of human diseases. One of these, polycystic kidney disease, can be caused by defects in a Ca²⁺-gated ion channel (TRPP2) found on the cilium. Other ciliary functions also contribute to cystogenesis, and defects in apical Ca²⁺ homeostasis have been implicated. By recording directly from the native cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin, we have identified a second Ca²⁺-gated channel in the ciliary membrane: the transient receptor potential cation channel, subfamily M, member 4 (TRPM4). In excised primary cilia, TRPM4 was found to have a low sensitivity to Ca²⁺, with an EC₅₀ of 646 μM at +100 mV. It was inhibited by MgATP and by 9-phenanthrol. The channel was not permeable to Ca²⁺ or Cl⁻ and had a permeability ratio PK/PNa of 1.42. Reducing the expression of Trpm4 mRNA with short hairpin (sh) RNA reduced the TRPM4 current by 87% and shortened primary cilia by 43%. When phospholipase C was inhibited, the sensitivity to cytoplasmic Ca²⁺ greatly increased (EC₅₀ = 26 μM at +100 mV), which is consistent with previous reports that phosphatidylinositol 4,5-bisphosphate (PIP2) modulates the channel. MgATP did not restore the channel to a preinactivation state, suggesting that the enzyme or substrate necessary for making PIP2 is not abundant in primary cilia of mIMCD-3 cells. The function of TRPM4 in renal primary cilia is not yet known, but it is likely to influence the apical Ca²⁺ dynamics of the cell, perhaps in tandem with TRPP2.Copyright © 2015 the American Physiological Society.
Related Compounds
Related Articles:
2015-01-01
[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]
2015-05-01
[J. Virol. 89(10) , 5714-23, (2015)]
2015-01-01
[EMBO Mol. Med. 7(1) , 102-23, (2015)]
2014-01-01
[Nucleic Acids Res. 42(17) , e130, (2014)]
2015-02-01
[Hum. Mol. Genet. 24(3) , 698-713, (2015)]