Molecular Cancer Research 2015-06-01

The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression.

Christopher S Rabender, Asim Alam, Gobalakrishnan Sundaresan, Robert J Cardnell, Vasily A Yakovlev, Nitai D Mukhopadhyay, Paul Graves, Jamal Zweit, Ross B Mikkelsen

Index: Mol. Cancer Res. 13 , 1034-43, (2015)

Full Text: HTML

Abstract

Here, evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast with normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on high-performance liquid chromatography analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin:dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid, and head and neck tumors compared with normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling, including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression, and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by a clonogenic assay, Ki67 staining, and 2[18F]fluoro-2-deoxy-D-glucose-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and, as a consequence, NOS activity generates more peroxynitrite and superoxide anion than nitric oxide, resulting in important tumor growth-promoting and antiapoptotic signaling properties.The synthetic BH4, Kuvan, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction, suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth.©2015 American Association for Cancer Research.


Related Compounds

Related Articles:

Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited.

2015-03-01

[Stroke 46(3) , 835-42, (2015)]

Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK.

2015-02-03

[EMBO J. 34(3) , 275-93, (2015)]

Detailed characterization of a long-term rodent model of critical illness and recovery.

2015-03-01

[Crit. Care Med. 43(3) , e84-96, (2015)]

The chemokine (CCL2-CCR2) signaling axis mediates perineural invasion.

2015-02-01

[Mol. Cancer Res. 13(2) , 380-90, (2015)]

Developmental tightening of cerebellar cortical synaptic influx-release coupling.

2015-02-04

[J. Neurosci. 35(5) , 1858-71, (2015)]

More Articles...