Indian Journal of Experimental Biology 2013-07-01

Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters.

Amit Ganguly, Subhabrata Das, Anamica Bhattacharya, Apurba Dey, Pradip Kumar Chatterjee

Index: Indian J. Exp. Biol. 51(7) , 556-66, (2013)

Full Text: HTML

Abstract

An efficient conversion of lignocellulose into fermentable sugars is a key step in producing bioethanol in a cost effective and eco-friendly manner. Alternative source like water hyacinth biomass (WHB) (Eichhornia crassipes) may be used as a supplement for the routine feedstocks. The enzyme loading for optimum yield of total reducing sugar was investigated and the enzyme-substrate interaction optimised. The maximal reducing sugar and xylose yield was obtained using cellulase and xylanase loading of 46.12 and 289.98 U/g and 2.26% (w/v) substrate loading. The efficiencies of ethanol production from the WHB hydrolysate are very less and the maximal ethanol yield was 3.4969 g/L when Pichia stiptis was used, followed by 3.4496 and 3.1349 g/L for Candida shehatae and Saccharomyces cerevisiae.


Related Compounds

Related Articles:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

2015-01-01

[Bioresour. Technol. 176 , 156-62, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

More Articles...