Biochemical and Biophysical Research Communications 2012-01-06

Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production.

Hiroshi Yoshii, Yukie Yoshii, Tatsuya Asai, Takako Furukawa, Shinichi Takaichi, Yasuhisa Fujibayashi

Index: Biochem. Biophys. Res. Commun. 417(1) , 640-5, (2012)

Full Text: HTML

Abstract

Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.Copyright © 2011 Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

2012-03-22

[J. Phys. Chem. A 116(11) , 2855-66, (2012)]

A novel analytical method to evaluate directly catalase activity of microorganisms and mammalian cells by ESR oximetry.

2010-09-01

[Free Radic. Res. 44(9) , 1036-43, (2010)]

Neurotoxicity of reactive aldehydes: the concept of "aldehyde load" as demonstrated by neuroprotection with hydroxylamines.

2006-06-20

[Brain Res. 1095(1) , 190-9, (2006)]

Nitroxide spin exchange due to re-encounter collisions in a series of n-alkanes.

2008-08-14

[J. Chem. Phys. 129(6) , 064501, (2008)]

EPR line shifts and line shape changes due to spin exchange of nitroxide free radicals in liquids: 6. Separating line broadening due to spin exchange and dipolar interactions.

2009-04-30

[J. Phys. Chem. A 113(17) , 4930-40, (2009)]

More Articles...