Journal of Separation Science 2011-04-01

Development and validation of two methods based on high-performance liquid chromatography-tandem mass spectrometry for determining 1,2-benzopyrone, dihydrocoumarin, o-coumaric acid, syringaldehyde and kaurenoic acid in guaco extracts and pharmaceutical preparations.

João C Gasparetto, Thais M Guimarães de Francisco, Francinete R Campos, Roberto Pontarolo

Index: J. Sep. Sci. 34(7) , 740-8, (2011)

Full Text: HTML

Abstract

In this study, two HPLC-ESI-MS/MS methods were developed and validated for the determination of 1,2-benzopyrone (COU), o-coumaric acid (OCA), kaurenoic acid (KAU), syringaldehyde (SYR), and dihydrocoumarin (DIH) in guaco extracts and pharmaceutical preparations (syrup and oral solution). The chromatographic separation was achieved using a C18 XBridge 150×2.1-mm (5-μm particle size) column maintained at 25°C. The mobile phases consisted of a gradient of water and acetonitrile containing 0.05% formic acid or 5  mM ammonium formate for the positive and negative ion modes, respectively. All of the calibration curves showed excellent coefficients of correlation (r≥0.9970) over the ranges of 1.25-400  ng/mL for coumarin, 10-600  ng/mL for dihydrocoumarin, 5-250  ng/mL for KAU, and 25-500  ng/mL for o-coumaric acid and syringaldehyde. The range of recovery was 96.3-103% with an RSD% of <4.85% for intraday and interday precision. The results indicate that the developed methods are fast, efficient, and sensitive for the quantification of the guaco metabolites in extracts and pharmaceutical forms while avoiding purification and derivatization steps.Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Related Compounds

Related Articles:

Effect of electron donating groups on polyphenol-based antioxidant dendrimers.

2015-04-01

[Biochimie 111 , 125-34, (2015)]

Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.

2015-04-01

[Bioresour. Technol. 181 , 224-30, (2015)]

Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study.

2005-11-17

[J. Med. Chem. 48 , 7234-42, (2005)]

Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants.

2015-06-01

[FEMS Microbiol. Lett. 362 , (2015)]

Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols.

2015-01-01

[Biotechnol. Prog. 31 , 700-6, (2015)]

More Articles...