Biological & Pharmaceutical Bulletin 2010-01-01

7-O-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro.

Wei Yun Zhang, Jung-Jin Lee, In-Su Kim, Yohan Kim, Jeong-Sook Park, Chang-Seon Myung

Index: Biol. Pharm. Bull. 33(9) , 1494-9, (2010)

Full Text: HTML

Abstract

The stimulation of glucose uptake into peripheral tissues is an important mechanism for the removal of glucose in blood and for the management of diabetes mellitus (DM). Since recent results have demonstrated the beneficial effects of flavonoids in relation to DM, this study was designed to examine the effects of 7-O-methylaromadendrin (7-O-MA), a flavonoid isolated from Inula viscosa, on glucose uptake into liver and fat tissue, and investigate the molecular mechanisms involved. 7-O-MA at 10 microM significantly stimulated insulin-induced glucose uptake measured by 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) in both human hepatocellular liver carcinoma (HepG2) cells and differentiated 3T3-L1 adipocytes. Adipocyte-specific fatty acid binding protein (aP2) gene expression was increased by 7-O-MA in adipocytes, and both gene and protein level of peroxisome proliferator-activated receptor gamma2 (PPARgamma2) was also increased. Moreover, 7-O-MA stimulated the reactivation of insulin-mediated phosphorylation of phosphatidylinositol 3-kinase (PI3K)-linked protein kinase B (Akt/PKB) and adenosine 5'-monophosphate-activated protein kinase (AMPK) in high glucose-induced, insulin-resistant HepG2 cells, and this effect was blocked by either LY294002, a PI3K inhibitor, or compound C, an AMPK inhibitor. Therefore, these results suggest that 7-O-MA might stimulate glucose uptake via PPARgamma2 activation and improve insulin resistance via PI3K and AMPK-dependent pathways, and be a potential candidate for the management of type 2 DM.


Related Compounds

Related Articles:

Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth.

2014-07-01

[J. Exp. Bot. 65(12) , 3157-64, (2014)]

Functional characterization of a Plagiochasma appendiculatum flavone synthase I showing flavanone 2-hydroxylase activity.

2014-06-27

[FEBS Lett. 588(14) , 2307-14, (2014)]

Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.

2012-02-01

[Appl. Environ. Microbiol. 78(3) , 684-94, (2012)]

5-O-glucosyldihydroflavones from the leaves of Helicia cochinchinensis.

2006-12-01

[Phytochemistry 67(24) , 2681-5, (2006)]

Stimulation of glucose uptake and improvement of insulin resistance by aromadendrin.

2011-01-01

[Pharmacology 88(5-6) , 266-74, (2011)]

More Articles...