Cancer Biology & Therapy 2014-06-01

Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells.

Lorena Rosik, Günter Niegisch, Ute Fischer, Manfred Jung, Wolfgang Arthur Schulz, Michèle Janine Hoffmann

Index: Cancer Biol. Ther. 15(6) , 742-57, (2014)

Full Text: HTML

Abstract

Epigenetic modifiers such as histone deacetylases (HDACs) have come into focus as novel drug targets for cancer therapy due to their functional role in tumor progression. Since common pan-HDAC inhibitors have adverse side effects and minor anti-cancer activity against solid tumors, enzyme-specific inhibitors were developed. HDAC6 is especially well-suited for specific inhibition due to its unique domain structure and mode of action and has been suggested to provide an exceptionally suitable target for cancer therapy. However, expression and function of HDACs have been insufficiently studied in urothelial cancers (UC), a disease urgently requiring new therapeutic approaches. The present study sought to evaluate HDAC6 as a target for treatment of urothelial cancers with enzyme-specific inhibitors. We observed moderate HDAC6 overexpression in urothelial cancer tissues and a broad range of expression in urothelial cancer cell lines. In the cell lines Tubacin was the most potent inhibitor, compared with Tubastatin and ST-80, but still active only at high micromolar concentrations. HDAC6 expression levels correlated poorly with sensitivity to enzyme inhibition. Combined treatments with heat shock, HSP90 inhibition by 17-AAG, proteasome inhibition by bortezomib, or DNA-damaging agents did not result in significant synergistic effects. Experiments with siRNA-mediated knockdown further underlined that urothelial cancer cells do not critically depend on HDAC6 expression for survival.


Related Compounds

Related Articles:

TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity.

2014-09-30

[Oncotarget 5(18) , 8107-22, (2014)]

DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis.

2014-07-21

[J. Cell Biol. 206(2) , 183-97, (2014)]

SK053 triggers tumor cells apoptosis by oxidative stress-mediated endoplasmic reticulum stress.

2015-02-15

[Biochem. Pharmacol. 93(4) , 418-27, (2015)]

ELF-MF attenuates quercetin-induced apoptosis in K562 cells through modulating the expression of Bcl-2 family proteins.

2014-12-01

[Mol. Cell Biochem. 397(1-2) , 33-43, (2014)]

High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity.

2014-01-01

[Skelet. Muscle 4 , 4, (2014)]

More Articles...