Journal of Dairy Science 2013-02-01

Binding of vitamin A by casein micelles in commercial skim milk.

M S Mohan, J L Jurat-Fuentes, F Harte

Index: J. Dairy Sci. 96(2) , 790-8, (2013)

Full Text: HTML

Abstract

Recent studies have shown that reassembled micelles formed by caseinates and purified casein fractions (α(s)- and β-casein) bind to hydrophobic compounds, including curcumin, docosahexaenoic acid, and vitamin D. However, limited research has been done on the binding of hydrophobic compounds by unmodified casein micelles in skim milk. In the present study, we investigated the ability of casein micelles in commercial skim milk to associate with vitamin A (retinyl palmitate), a fat-soluble vitamin commonly used to fortify milk. Milk protein fractions from different commercially available skim milk samples subjected to different processing treatments, including pasteurized, ultrapasteurized, organic pasteurized, and organic ultrapasteurized milks, were separated by fast protein liquid chromatography. The fractions within each peak were combined and freeze-dried. Sodium dodecyl sulfate-PAGE with silver staining was used to identify the proteins present in each of the fractions. The skim milk samples and fractions were extracted for retinyl palmitate and quantified against a standard using normal phase-HPLC. Retinyl palmitate was found to associate with the fraction of skim milk containing caseins, whereas the other proteins (BSA, β-lactoglobulin, α-lactalbumin) did not show any binding. The retinyl palmitate content in the various samples ranged from 1.59 to 2.48 µg of retinyl palmitate per mL of milk. The casein fractions contained between 14 and 40% of total retinyl palmitate in the various milks tested. The variation in the retention of vitamin A by caseins was probably explained by differences in the processing of different milk samples, including thermal treatment, the form of vitamin A emulsion used for fortification, and the point of fortification during processing. Unmodified casein micelles have a strong intrinsic affinity toward the binding of vitamin A used to fortify commercially available skim milks.Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

Developing structure-activity relationships for the prediction of hepatotoxicity.

2010-07-19

[Chem. Res. Toxicol. 23 , 1215-22, (2010)]

A predictive ligand-based Bayesian model for human drug-induced liver injury.

2010-12-01

[Drug Metab. Dispos. 38 , 2302-8, (2010)]

Lack of Impact of High Dietary Vitamin A on T Helper 2-Dependent Contact Hypersensitivity to Fluorescein Isothiocyanate in Mice.

2015-01-01

[Biol. Pharm. Bull. 38 , 1827-30, (2015)]

Retinylamine Benefits Early Diabetic Retinopathy in Mice.

2015-08-28

[J. Biol. Chem. 290 , 21568-79, (2015)]

Simultaneous determination of 13-cis and all-trans vitamin A palmitate (retinyl palmitate), vitamin A acetate (retinyl acetate), and total vitamin E (alpha-tocopherol and DL-alpha-tocopherol acetate) in infant formula and adult nutritionals by normal phase HPLC: first action 2012.10.

2013-01-01

[J. AOAC Int. 96(5) , 1073-81, (2013)]

More Articles...