Experimental Hematology 2008-10-01

Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis.

Loyal A Goff, Shayne Boucher, Christopher L Ricupero, Sara Fenstermacher, Mavis Swerdel, Lucas G Chase, Christopher C Adams, Jonathan Chesnut, Uma Lakshmipathy, Ronald P Hart

Index: Exp. Hematol. 36(10) , 1354-1369, (2008)

Full Text: HTML

Abstract

Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self-renewal and differentiation. We propose that specific intracellular signaling pathways modulate gene expression during differentiation by regulating microRNA expression.Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with platelet-derived growth factor (PDGF) signaling.The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells, such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted toward specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signaling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signaling was experimentally confirmed by direct PDGF inhibition.Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways.


Related Compounds

Related Articles:

Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells.

2014-01-01

[PLoS ONE 9(9) , e108055, (2014)]

DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination.

2015-01-01

[Toxicol. Sci. 143(1) , 54-63, (2014)]

Hypoxia reduces MAX expression in endothelial cells by unproductive splicing.

2014-12-20

[FEBS Lett. 588(24) , 4784-90, (2014)]

Proteolysis of decellularized extracellular matrices results in loss of fibronectin and cell binding activity.

2015-04-03

[Biochem. Biophys. Res. Commun. 459(2) , 246-51, (2015)]

Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds.

2014-07-01

[Ann. Biomed. Eng. 42(7) , 1381-90, (2014)]

More Articles...