Antimicrobial Agents and Chemotherapy 2009-05-01

Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model.

Anne Sandberg, Jonas H R Hessler, Robert L Skov, Jens Blom, Niels Frimodt-Møller

Index: Antimicrob. Agents Chemother. 53 , 1874-83, (2009)

Full Text: HTML

Abstract

Antibiotic treatment of Staphylococcus aureus infections is often problematic due to the slow response to therapy and the high frequency of infection recurrence. The intracellular persistence of staphylococci has been recognized and could offer a good explanation for these treatment difficulties. Knowledge of the interplay between intracellular antibiotic activity and the overall outcome of infection is therefore important. Several intracellular in vitro models have been developed, but few experimental animal models have been published. The mouse peritonitis/sepsis model was used as the basic in vivo model exploring a quantitative ex vivo extra- and intracellular differentiation assay. The intracellular presence of S. aureus was documented by electron microscopy. Five antibiotics, dicloxacillin, cefuroxime, gentamicin, azithromycin, and rifampin (rifampicin), were tested in the new in vivo model; and the model was able to distinguish between their extra- and intracellular effects. The intracellular effects of the five antibiotics could be ranked as follows as the mean change in the log(10) number of CFU/ml (Delta log(10) CFU/ml) between treated and untreated mice after 4 h of treatment: dicloxacillin (3.70 Delta log(10) CFU/ml) > cefuroxime (3.56 Delta log(10) CFU/ml) > rifampin (1.86 Delta log(10) CFU/ml) > gentamicin (0.61 Delta log(10) CFU/ml) > azithromycin (0.21 Delta log(10) CFU/ml). We could also show that the important factors during testing of intracellular activity in vivo are the size, number, and frequency of doses; the time of exposure; and the timing between the start of infection and treatment. A poor correlation between the intracellular accumulation of the antibiotics and the actual intracellular effect was found. This stresses the importance of performing experimental studies, like those with the new in vivo model described here, to measure actual intracellular activity instead of making predictions based on cellular pharmacokinetic and MICs.


Related Compounds

Related Articles:

Enhancement of in vitro activity of tuberculosis drugs by addition of thioridazine is not reflected by improved in vivo therapeutic efficacy.

2014-12-01

[Tuberculosis (Edinb.) 94(6) , 701-7, (2015)]

Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice.

2015-02-01

[PLoS Pathog. 11(2) , e1004645, (2015)]

Kinetics of recA and recX induction in drug-susceptible and MDR clinical strains of Mycobacterium tuberculosis.

2014-12-01

[J. Antimicrob. Chemother. 69(12) , 3199-202, (2014)]

A trisubstituted benzimidazole cell division inhibitor with efficacy against Mycobacterium tuberculosis.

2014-01-01

[PLoS ONE 9(4) , e93953, (2014)]

Desmethyl bosentan displays a similar in vitro interaction profile as bosentan.

2015-02-01

[Pulm. Pharmacol. Ther. 30 , 80-6, (2015)]

More Articles...