Journal of medicinal and pharmaceutical chemistry 2009-11-12

Searching for new cures for tuberculosis: design, synthesis, and biological evaluation of 2-methylbenzothiazoles.

Qingqing Huang, Jialin Mao, Baojie Wan, Yuehong Wang, Reto Brun, Scott G Franzblau, Alan P Kozikowski

Index: J. Med. Chem. 52 , 6757-67, (2009)

Full Text: HTML

Abstract

The actual development and clinical use of new therapeutics for tuberculosis (TB) have remained stagnant for years because of the complexity of the disease process, the treatment of which at present requires the administration of drug combinations over a 6 month period. There is thus an urgent need for the discovery and development of novel, more active, and less toxic anti-TB agents. In this study, we report on the chemistry and biology of a series of potent 5-(2-methylbenzothiazol-5-yloxymethyl)isoxazole-3-carboxamide derivatives, which proved to be active against replicating Mycobacterium tuberculosis (Mtb) H(37)Rv. The most potent compounds 7j and 7s were found to inhibit Mtb growth at micromolar concentrations, with MIC values of 1.4 and 1.9 microM, respectively. Impressively, all active compounds were nontoxic toward Vero cells (IC(50) > 128 microM). Moreover, the best of these compounds were also tested against protozoan parasites, and some of these compounds were found to show activity, especially against Plasmodium falciparum. These studies thus suggest that certain 2-methylbenzothiazole based compounds may serve as promising lead scaffolds for further elaboration as anti-TB drugs and as possible antimalaria drugs.


Related Compounds

Related Articles:

Enhancement of in vitro activity of tuberculosis drugs by addition of thioridazine is not reflected by improved in vivo therapeutic efficacy.

2014-12-01

[Tuberculosis (Edinb.) 94(6) , 701-7, (2015)]

Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice.

2015-02-01

[PLoS Pathog. 11(2) , e1004645, (2015)]

Kinetics of recA and recX induction in drug-susceptible and MDR clinical strains of Mycobacterium tuberculosis.

2014-12-01

[J. Antimicrob. Chemother. 69(12) , 3199-202, (2014)]

A trisubstituted benzimidazole cell division inhibitor with efficacy against Mycobacterium tuberculosis.

2014-01-01

[PLoS ONE 9(4) , e93953, (2014)]

Desmethyl bosentan displays a similar in vitro interaction profile as bosentan.

2015-02-01

[Pulm. Pharmacol. Ther. 30 , 80-6, (2015)]

More Articles...