Validation of a hypoxia-inducible factor-1 alpha specimen collection procedure and quantitative enzyme-linked immunosorbent assay in solid tumor tissues.
Sook Ryun Park, Robert J Kinders, Sonny Khin, Melinda Hollingshead, Smitha Antony, Ralph E Parchment, Joseph E Tomaszewski, Shivaani Kummar, James H Doroshow
Index: Anal. Biochem. 459 , 1-11, (2014)
Full Text: HTML
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is an important marker of hypoxia in human tumors and has been implicated in tumor progression. Drugs targeting HIF-1α are being developed, but the ability to measure drug-induced changes in HIF-1α is limited by the lability of the protein in normoxia. Our goal was to devise methods for specimen collection and processing that preserve HIF-1α in solid tumor tissues and to develop and validate a two-site chemiluminescent quantitative enzyme-linked immunosorbent assay (ELISA) for HIF-1α. We tested various strategies for HIF-1α stabilization in solid tumors, including nitrogen gas-purged lysis buffer, the addition of proteasome inhibitors or the prolyl hydroxylase inhibitor 2-hydroxyglutarate, and bead homogenization. Degassing and the addition of 2-hydroxyglutarate to the collection buffer significantly increased HIF-1α recovery, whereas bead homogenization in sealed tubes improved HIF-1α recovery and reduced sample variability. Validation of the ELISA demonstrated intra- and inter-assay variability of less than 15% and accuracy of 99.8±8.3% as assessed by spike recovery. Inter-laboratory reproducibility was also demonstrated (R(2)=0.999). Careful sample handling techniques allow us to quantitatively detect HIF-1α in samples as small as 2.5μg of total protein extract, and this method is currently being applied to analyze tumor biopsy specimens in early-phase clinical trials. Copyright © 2014 Elsevier Inc. All rights reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
2015-01-01
[Nat. Commun. 6 , 5794, (2015)]
Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice.
2015-04-01
[Acta Physiol. (Oxf.) 213(4) , 902-19, (2015)]
2014-12-01
[Plant Cell 26(12) , 4763-81, (2015)]