Toxicon 2015-11-01

A new Kunitz-type plasmin inhibitor from scorpion venom.

Li Ding, Xiaobo Wang, Hongyan Liu, Mingkui San, Yue Xu, Jian Li, Shan Li, Zhijian Cao, Wenxin Li, Yingliang Wu, Zongyun Chen

Index: Toxicon 106 , 7-13, (2015)

Full Text: HTML

Abstract

Kunitz-type peptides from venomous animals are an important source of lead drug candidates towards human plasmin, a target of protease-associated diseases. However, no Kunitz-type plasmin inhibitor from venomous scorpion has been characterized. Here, we first investigated plasmin inhibiting activities of eight known Kunitz-type scorpion toxins Hg1, BmKTT-1, BmKTT-2, BmKTT-3, LmKTT-1a, LmKTT-1b, LmKTT-1c and BmKPI, and found a new plasmin inhibitor BmKTT-2, a Kunitz-type toxin peptide from the scorpion Buthus martensi karch. Protease inhibitory activity assay showed that BmKTT-2 potently inhibited plasmin with a Ki value of 8.75 ± 2.05 nM. Structure-function relationship studies between BmKTT-2 and plasmin showed that BmKTT-2 is a classical Kunitz-type plasmin inhibitor: Lys13 in BmKTT-2 is the P1 site, and Ala14 in BmKTT-2 is the P1' site. Interestingly, BmKTT-2 has potent inhibiting activities towards three important digestive serine proteases trypsin, chymotrypsin and elastase, suggesting a good stability for administering oral medications. To the best of our knowledge, BmKTT-2 is the first Kunitz-type human plasmin inhibitor from scorpion venom, providing novel insights into drug developments targeting human plasmin protease.Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations.

2015-04-15

[Biochem. J. 467(2) , 345-52, (2015)]

Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf.

2015-05-01

[Biochem. J. 467(3) , 425-38, (2015)]

Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein.

2015-04-01

[J. Virol. 89(8) , 4421-33, (2015)]

DNase II-dependent DNA digestion is required for DNA sensing by TLR9.

2015-01-01

[Nat. Commun. 6 , 5853, (2015)]

More Articles...