Chemosphere 2014-08-01

Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β-PbO2 anode.

Fernanda L Souza, José M Aquino, Kallyni Irikura, Douglas W Miwa, Manuel A Rodrigo, Artur J Motheo

Index: Chemosphere 109 , 187-94, (2014)

Full Text: HTML

Abstract

The electrooxidation of the dimethyl phthalate (DMP) ester was galvanostatically carried out in a filter-press reactor using a fluoride-doped lead dioxide (β-PbO2,F) film electrodeposited on a Ti substrate. The variables investigated were the nature of the supporting electrolyte (NaCl and Na2SO4), pH (3, 7, and 10), current density (10, 20, 40, 60, and 80mAcm(-2)), and temperature (10, 20, 30, 40, and 50°C). The removal of DMP was monitored through high performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The best conditions were obtained using Na2SO4 and at low current densities, independent of the solution pH or temperature. These conditions led to the highest levels of current efficiencies and complete combustion. However, the TOC removal levels were low, due to the generation of highly oxidized intermediates, which was confirmed by the intermediates detected by HPLC. Copyright © 2014 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Biocompatible, biodegradable and porous liquid crystal elastomer scaffolds for spatial cell cultures.

2015-02-01

[Macromol. Biosci. 15(2) , 200-14, (2015)]

Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue.

2015-02-01

[Drug Test. Anal. 7(2) , 131-42, (2015)]

Affinity precipitation of a monoclonal antibody from an industrial harvest feedstock using an ELP-Z stimuli responsive biopolymer.

2014-08-01

[Biotechnol. Bioeng. 111(8) , 1595-603, (2014)]

Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn's disease.

2015-02-01

[Inflamm. Bowel Dis. 21(2) , 276-86, (2015)]

Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes.

2015-01-01

[Stem Cells 33(1) , 301-9, (2014)]

More Articles...