Gynecological Endocrinology 2015-02-01

The progesterone and estrogen modify the uterine prolactin and prolactin receptor expression of hyperprolactinemic mice.

Vinícius Cestari do Amaral, Kátia Candido Carvalho, Gustavo Arantes Rosa Maciel, Tommaso Simoncini, Priscilla Ludovico da Silva, Rodrigo Rodrigues Marcondes, José Maria Soares, Edmund Chada Baracat

Index: Gynecol. Endocrinol. 31(2) , 148-51, (2015)

Full Text: HTML

Abstract

The aim of this study was to evaluate the effects of metoclopramide-induced hyperprolactinemia on the prolactin (PRL) and PRL receptor's expression in the uterus of mice. For this purpose, 49 Swiss mice were divided into the following groups: GrSS (non-ovariectomized mice given vehicle); GrMET (non-ovariectomized mice treated with metoclopramide); OvSS (ovariectomized mice given vehicle); OvMET (ovariectomized mice treated with metoclopramide); OvMET+17βE (ovariectomized mice treated with metoclopramide and 17β estradiol); OvMET+MP (ovariectomized mice treated with metoclopramide and micronized progesterone); OvMET+17βE+MP (ovariectomized mice treated with metoclopramide and a solution of 17β estradiol and micronized progesterone). Immunohistochemical analyzes were evaluated semi-quantitatively. Our results showed that GrMET, OvMET+MP, and OvMET+17βE+MP presented strong PRL expression. OvMET and OvMET+17βE presented mild reaction, while GrSS and OvSS presented weak reaction. Concerning PRL receptor, OvMET+MP and OvMET+17βE+MP showed strong reaction; GrMET, OvSS, and OvMET+17βE showed mild reaction; and GrSS and OvMET showed weak reaction. These findings suggest that progesterone alone or in combination with estrogen may increase the expression of uterine PRL and PRL receptor.


Related Compounds

Related Articles:

Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae.

2014-01-01

[Nucleic Acids Res. 42(17) , e130, (2014)]

A precisely substituted benzopyran targets androgen refractory prostate cancer cells through selective modulation of estrogen receptors.

2015-03-15

[Toxicol. Appl. Pharmacol. 283(3) , 187-97, (2015)]

Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of estradiol.

2014-01-01

[PLoS ONE 9(6) , e99421, (2014)]

Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86.

2014-01-01

[BMC Cancer 14 , 853, (2014)]

Loss of TGFβ Receptor Type 2 Expression Impairs Estrogen Response and Confers Tamoxifen Resistance.

2015-04-01

[Cancer Res. 75(7) , 1457-69, (2015)]

More Articles...