Sex-dependent influence of endogenous estrogen in pulmonary hypertension.
Kirsty M Mair, Audrey F Wright, Nicholas Duggan, David J Rowlands, Martin J Hussey, Sonia Roberts, Josephine Fullerton, Margaret Nilsen, Lynn Loughlin, Matthew Thomas, Margaret R MacLean
Index: Am. J. Respir. Crit. Care Med. 190(4) , 456-67, (2014)
Full Text: HTML
Abstract
The incidence of pulmonary arterial hypertension is greater in women, suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males, exogenously administered estrogen can protect against pulmonary hypertension (PH). However, in models that display female susceptibility, estrogens may play a causative role.To clarify the influence of endogenous estrogen and sex in PH and assess the therapeutic potential of a clinically available aromatase inhibitor.We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH: the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of sex on pulmonary expression of aromatase in these models and in lungs from patients with pulmonary arterial hypertension.Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was caused by reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor α also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased bone morphogenetic protein receptor 2 and Id1 expression compared with male. Anastrozole treatment reversed the impaired bone morphogenetic protein receptor 2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared with male.The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential.
Related Compounds
Related Articles:
2014-01-01
[Nucleic Acids Res. 42(17) , e130, (2014)]
2015-03-15
[Toxicol. Appl. Pharmacol. 283(3) , 187-97, (2015)]
2014-01-01
[PLoS ONE 9(6) , e99421, (2014)]
Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86.
2014-01-01
[BMC Cancer 14 , 853, (2014)]
Loss of TGFβ Receptor Type 2 Expression Impairs Estrogen Response and Confers Tamoxifen Resistance.
2015-04-01
[Cancer Res. 75(7) , 1457-69, (2015)]