Evidence of MTCBP-1 interaction with the cytoplasmic domain of MT1-MMP: Implications in the autophagy cell index of high-grade glioblastoma.
Jonathan Pratt, Mustapha Iddir, Steve Bourgault, Borhane Annabi
Index: Mol. Carcinog. 55 , 148-60, (2016)
Full Text: HTML
Abstract
Progression of astrocytic tumors is, in part, related to their dysregulated autophagy capacity. Recent evidence indicates that upstream autophagy signaling events can be triggered by MT1-MMP, a membrane-bound matrix metalloproteinase that contributes to the invasive phenotype of brain cancer cells. The signaling functions of MT1-MMP require its intracellular domain, and recent identification of MTCBP-1, a cytoplasmic 19 kDa protein involved in the inhibition of MT1-MMP-mediated cell migration, suggests that modulation of MT1-MMP cytoplasmic domain-mediated signaling may affect other carcinogenic processes. Using qPCR and screening of cDNA generated from brain tumor tissues of grades I, II, III, and IV, MT1-MMP gene expression was found to correlate with increased grade of tumors. Inversely, MTCBP-1 expression decreased with increasing grade of brain tumor. Confocal microscopy and fluorescence resonance energy transfer (FRET) analysis revealed that overexpressing a cytoplasmic-deleted MT1-MMP recombinant protein mutant prevented MTCBP-1 recruitment to the intracellular leaf of plasma membrane in U87 glioblastoma cells. The interaction between MTCBP-1 and the 20 amino acids peptide representing the MT1-MMP cytoplasmic domain was confirmed by surface plasmon resonance. Overexpression of a full-length Wt-MT1-MMP triggered acidic autophagy vesicle formation and autophagic puncta formation for green fluorescent microtubule-associated protein 1 light chain 3 (GFP-LC3). Autophagic vesicles and GFP-LC3 puncta formation were abrogated in the presence of MTCBP-1. Our data elucidate a new role for MTCBP-1 regulating the intracellular function of MT1-MMP-mediated autophagy. The inverse correlation between MTCBP-1 and MT1-MMP expression with brain tumor grades could also contribute to the decreased autophagic index observed in high-grade tumors.© 2015 Wiley Periodicals, Inc.
Related Compounds
Related Articles:
2015-02-05
[Chem. Biol. Interact. 227 , 7-17, (2015)]
In vitro inhibition of lysine decarboxylase activity by organophosphate esters.
2014-07-01
[Biochem. Pharmacol. 92(3) , 506-16, (2014)]
Antiviral effect of methylated flavonol isorhamnetin against influenza.
2015-01-01
[PLoS ONE 10(3) , e0121610, (2015)]
2015-03-01
[Antimicrob. Agents Chemother. 59(3) , 1680-9, (2015)]
2014-12-01
[Mol. Cell Biochem. 397(1-2) , 33-43, (2014)]