Glia 2015-05-01

IL-17A activates ERK1/2 and enhances differentiation of oligodendrocyte progenitor cells.

Jane M Rodgers, Andrew P Robinson, Elen S Rosler, Karen Lariosa-Willingham, Rachael E Persons, Jason C Dugas, Stephen D Miller

Index: Glia 63(5) , 768-79, (2015)

Full Text: HTML

Abstract

Inflammatory signals present in demyelinated multiple sclerosis lesions affect the reparative remyelination process conducted by oligodendrocyte progenitor cells (OPCs). Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 have differing effects on the viability and growth of OPCs, however the effects of IL-17A are largely unknown. Primary murine OPCs were stimulated with IL-17A and their viability, proliferation, and maturation were assessed in culture. IL-17A-stimulated OPCs exited the cell cycle and differentiated with no loss in viability. Expression of the myelin-specific protein, proteolipid protein, increased in a cerebellar slice culture assay in the presence of IL-17A. Downstream, IL-17A activated ERK1/2 within 15 min and induced chemokine expression in 2 days. These results demonstrate that IL-17A exposure stimulates OPCs to mature and participate in the inflammatory response.© 2014 Wiley Periodicals, Inc.


Related Compounds

Related Articles:

Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery.

2014-12-01

[Tissue Eng. Part A 20(23-24) , 3163-75, (2014)]

A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function.

2015-02-04

[J. Neurosci. 35(5) , 1999-2014, (2015)]

Oversulfated heparins with low anticoagulant activity are strong and fast inhibitors of hepcidin expression in vitro and in vivo.

2014-12-01

[Biochem. Pharmacol. 92(3) , 467-75, (2014)]

Establishment and characterization of an air-liquid canine corneal organ culture model to study acute herpes keratitis.

2014-12-01

[J. Virol. 88(23) , 13669-77, (2014)]

Hypoxia reduces MAX expression in endothelial cells by unproductive splicing.

2014-12-20

[FEBS Lett. 588(24) , 4784-90, (2014)]

More Articles...