Mechanosensitive Ca²⁺-permeable channels in human leukemic cells: pharmacological and molecular evidence for TRPV2.
Igor Pottosin, Iván Delgado-Enciso, Edgar Bonales-Alatorre, María G Nieto-Pescador, Eloy G Moreno-Galindo, Oxana Dobrovinskaya
Index: Biochim. Biophys. Acta 1848(1 Pt A) , 51-9, (2015)
Full Text: HTML
Abstract
Mechanosensitive channels are present in almost every living cell, yet the evidence for their functional presence in T lymphocytes is absent. In this study, by means of the patch-clamp technique in attached and inside-out modes, we have characterized cationic channels, rapidly activated by membrane stretch in Jurkat T lymphoblasts. The half-activation was achieved at a negative pressure of ~50mm Hg. In attached mode, single channel currents displayed an inward rectification and the unitary conductance of ~40 pS at zero command voltage. In excised inside-out patches the rectification was transformed to an outward one. Mechanosensitive channels weakly discriminated between mono- and divalent cations (PCa/PNa~1) and were equally permeable for Ca²⁺ and Mg²⁺. Pharmacological analysis showed that the mechanosensitive channels were potently blocked by amiloride (1mM) and Gd³⁺ (10 μM) in a voltage-dependent manner. They were also almost completely blocked by ruthenium red (1 μM) and SKF 96365 (250 μM), inhibitors of transient receptor potential vanilloid 2 (TRPV2) channels. At the same time, the channels were insensitive to 2-aminoethoxydiphenyl borate (2-APB, 100 μM) or N-(p-amylcinnamoyl)anthranilic acid (ACA, 50 μM), antagonists of transient receptor potential canonical (TRPC) or transient receptor potential melastatin (TRPM) channels, respectively. Human TRPV2 siRNA virtually abolished the stretch-activated current. TRPV2 are channels with multifaceted functions and regulatory mechanisms, with potentially important roles in the lymphocyte Ca²⁺ signaling. Implications of their regulation by mechanical stress are discussed in the context of lymphoid cells functions.Copyright © 2014 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2015-01-01
[Nucleic Acids Res. 43(1) , 565-80, (2015)]
2011-12-01
[J. Sci. Ind. Res. 65(10) , 808, (2006)]
2014-09-01
[Biochim. Biophys. Acta 1844(9) , 1523-9, (2014)]
2015-01-01
[Nucleic Acids Res. 43(1) , 40-50, (2015)]
2015-05-01
[Acta Biomater. 18 , 249-61, (2015)]