Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries.
Hoon Kim, Joungphil Lee, Hyungmin Ahn, Onnuri Kim, Moon Jeong Park
Index: Nat. Commun. 6 , 7278, (2015)
Full Text: HTML
Abstract
Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g(-1) after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li(+)-ion transfer rate, affording a rate performance of 1210, mAh g(-1) at 0.1 C and 730 mAh g(-1) at 5 C.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]
2014-10-01
[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]
Use of an enzyme-assisted method to improve protein extraction from olive leaves.
2015-02-15
[Food Chem. 169 , 28-33, (2014)]
2015-04-30
[Int. J. Pharm. 484(1-2) , 283-91, (2015)]