Efficient production of recombinant aldehyde reductase and its application for asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate.
Keju Jing, Zhinan Xu, Ying Liu, Xiaoxia Jiang, Li Peng, Peilin Cen
Index: Prep Biochem Biotechnol. 35(3) , 203-15, (2005)
Full Text: HTML
Abstract
An NADPH-dependent aldehyde reductase (ALR, EC1.1.1.2) gene is cloned from Sporobolomyces salmonicolor ZJUB 105, and inserted into plasmid pQE30 to construct the expression plasmid (pQE30-ALR). A variety of E. coli strains were employed as hosts to obtain transformants with pQE30-ALR, respectively. Among these different types of transformants, the highest enzyme activity of ALR can be produced with E. coli M15 (pQE30-ALR). The bioactivity of ALR could be further improved significantly by the optimization of induction conditions. The results showed that the enzyme activity of ALR reached 6.48 U/mg protein, which is fifteen times higher than that of S. salmonicolor ZJUB 105. This recombinant strain was applied to the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (R)-4-chloro-3- hydroxybutanoate (CHBE). The results showed that the yield and optical purity of (R)-CHBE reached 98.5% and 99% e.e. (enantiomeric excess), respectively.
Related Compounds
Related Articles:
2006-03-01
[Appl. Microbiol. Biotechnol. 70(1) , 40-6, (2006)]
2003-10-01
[Biosci. Biotechnol. Biochem. 67(10) , 2145-53, (2003)]
2009-04-01
[Biotechnol. Lett. 31(4) , 537-42, (2009)]
Biosimulation of drug metabolism—A yeast based model
2009-01-01
[Eur. J. Pharm. Sci. 36(1) , 157-70, (2009)]
2010-09-01
[J. Microbiol. Biotechnol. 20(9) , 1300-6, (2010)]