Steroids 2015-07-01

Sterol liganding of OSBP-related proteins (ORPs) regulates the subcellular distribution of ORP-VAPA complexes and their impacts on organelle structure.

Henriikka Kentala, Simon G Pfisterer, Vesa M Olkkonen, Marion Weber-Boyvat

Index: Steroids 99 , 248-58, (2015)

Full Text: HTML

Abstract

Oxysterol-binding protein (OSBP) and its homologues (ORPs) are lipid-binding/transfer proteins with affinity for oxysterols, cholesterol and glycerophospholipids. In addition to a ligand-binding domain, a majority of the ORPs carry a pleckstrin homology domain that targets organelle membranes via phosphoinositides, and a motif targeting the endoplasmic reticulum (ER) via VAMP-associated proteins (VAPs). We employed here Bimolecular Fluorescence Complementation (BiFC) to systematically assess the effects of sterol manipulation of HuH7 cells on complexes of established sterol-binding ORPs with their ER receptor, VAMP-associated protein A (VAPA). Depletion of cellular cholesterol with lipoprotein-deficient medium and Mevastatin caused concentration of OSBP-VAPA complexes and Golgi complex markers at a juxtanuclear position, an effect reversed by low-density lipoprotein treatment. A similar redistribution of OSBP-VAPA but not of sterol-binding deficient mutant OSBP(ΔELSK)-VAPA, occurred upon treatment with the high-affinity ligand, 25-hydroxycholesterol (25OHC), which reduced total and free cholesterol. ORP2-VAPA complexes, which localize in untreated cells at blob-like ER structures with associated lipid droplets, were redistributed upon treatment with the ORP2 ligand 22(R)OHC to a diffuse cytoplasmic/ER pattern and the plasma membrane. Analogously, distribution of ORP4L-VAPA complexes between the plasma membrane and vimentin intermediate filament associated compartments was modified by statin or 25OHC treatment. The treatments resulted in loss of vimentin co-localization, and sterol-binding deficient ORP4L(ΔELSR)-VAPA localized predominantly to the plasma membrane. In conclusion, treatment with statin or oxysterol ligands modify the subcellular targeting of ORP-VAPA complexes, consistent with the notion that this machinery controls lipid homeostasis and signaling at organelle interfaces. Copyright © 2015 Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

2015-01-01

[Bioresour. Technol. 176 , 156-62, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

More Articles...