Synthesis of a red fluorescent dye-conjugated Ag@SiO2 nanocomposite for cell immunofluorescence.
Meicong Dong, Yu Tian, Dimitri Pappas
Index: Appl. Spectrosc. 69(2) , 215-21, (2015)
Full Text: HTML
Abstract
In this work we describe a one-step approach for incorporating a red fluorophore (2SBPO) into core-shell nanoparticles for metal-enhanced fluorescence immunolabels. The 2SBPO-MEF nanoparticles are particularly attractive as cell labels because their ∼ 670 nm emission has minimal overlap with cell autofluorescence and from overlap with many conventional probes. 2SBPO was incorporated through physical entrapment during the Stöber process. Antibody-based cell labels were then synthesized using covalent linkage. The nanoparticle fluorescence was 7.5-fold higher than control nanoparticles lacking a metal core. We demonstrated labeling of CD4 + HuT 78 T lymphocytes using anti-CD4-conjugated nanoparticle labels. Cells labeled with anti-CD4 nanoparticles showed a 35-fold fluorescence signal compared to anti-CD4 coreless controls. This simple synthesis protocol can be applied to a variety of hydrophilic fluorophore types and has broad potential in bioanalytical and biosensing applications.
Related Compounds
Related Articles:
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Bioresour. Technol. 176 , 156-62, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]