Surface modifications for enhanced enzyme immobilization and improved electron transfer of PQQ-dependent glucose dehydrogenase anodes.
Ryan J Lopez, Sofia Babanova, Kateryna Artyushkova, Plamen Atanassov
Index: Bioelectrochemistry 105 , 78-87, (2015)
Full Text: HTML
Abstract
Pyrroloquinoline quinone dependent soluble glucose dehydrogenase (PQQ-sGDH) enzymatic MWCNT electrodes were p roduced using 1-pyrenecarboxylic acid (PCA) activated through carbodiimide functionalization and 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) as tethering agents. At 600 mV potential, the current density generated by the activated-PCA tethered PQQ-sGDH anode was significantly greater than the current density generated by the untethered PQQ-sGDH and PBSE tethered anodes, and performance was nearly identical to the performance of a covalently bound PQQ-sGDH anode. A technique for covalently bonding heme-b (hemin), a natural quinohemoprotein porphyrin redox cofactor, to carbon nanotubes modified with arylamine groups is reported. The resulting performance of the covalently bound hemin PQQ-sGDH anode is considerably higher than that of any other PQQ-sGDH anodes tested.Copyright © 2015 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Bioresour. Technol. 176 , 156-62, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]