Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen
Vladimir V. Temchura, Diana Kozlova, Viktoriya Sokolova, Klaus Überla, Matthias Epple
Index: Biomaterials 35(23) , 6098-105, (2014)
Full Text: HTML
Abstract
Cross-linking of the B-cell receptors of an antigen-specific B-cell is the initial signal for B-cell activation, proliferation, and differentiation into antibody secreting plasma cells. Since multivalent particulate structures are efficient activators of antigen-specific B-cells, we developed biodegradable calcium phosphate nanoparticles displaying protein antigens on their surface and explored the efficacy of the B-cell activation after exposure to these nanoparticles. The calcium phosphate nanoparticles were functionalized with the model antigen Hen Egg Lysozyme (HEL) to take advantage of a HEL-specific B-cell receptor transgenic mouse model. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. The functionalized calcium phosphate nanoparticles were preferentially bound and internalized by HEL-specific B-cells. Co-cultivation of HEL-specific B-cells with the functionalized nanoparticles also increased surface expression of B-cell activation markers. Functionalized nanoparticles were able to effectively cross-link B-cell receptors at the surface of antigen-matched B-cells and were 100-fold more efficient in the activation of B-cells than soluble HEL. Thus, calcium phosphate nanoparticles coated with protein antigens are promising vaccine candidates for induction humoral immunity.
Related Compounds
Related Articles:
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Bioresour. Technol. 176 , 156-62, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]