PNAS 2015-05-19

Predator lipids induce paralytic shellfish toxins in bloom-forming algae.

Erik Selander, Julia Kubanek, Mats Hamberg, Mats X Andersson, Gunnar Cervin, Henrik Pavia

Index: Proc. Natl. Acad. Sci. U. S. A. 112 , 6395-400, (2015)

Full Text: HTML

Abstract

Interactions among microscopic planktonic organisms underpin the functioning of open ocean ecosystems. With few exceptions, these organisms lack advanced eyes and thus rely largely on chemical sensing to perceive their surroundings. However, few of the signaling molecules involved in interactions among marine plankton have been identified. We report a group of eight small molecules released by copepods, the most abundant zooplankton in the sea, which play a central role in food webs and biogeochemical cycles. The compounds, named copepodamides, are polar lipids connecting taurine via an amide to isoprenoid fatty acid conjugate of varying composition. The bloom-forming dinoflagellate Alexandrium minutum responds to pico- to nanomolar concentrations of copepodamides with up to a 20-fold increase in production of paralytic shellfish toxins. Different copepod species exude distinct copepodamide blends that contribute to the species-specific defensive responses observed in phytoplankton. The signaling system described here has far reaching implications for marine ecosystems by redirecting grazing pressure and facilitating the formation of large scale harmful algal blooms.


Related Compounds

Related Articles:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

2015-01-01

[Bioresour. Technol. 176 , 156-62, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

More Articles...