Monolithic capillary columns based on pentaerythritol acrylates for molecular-size-based separations of synthetic polymers.
Alexander Kurganov, Elena Victorova, Anastasiia Kanateva
Index: J. Sep. Sci. 38 , 2223-8, (2015)
Full Text: HTML
Abstract
Monolithic capillary columns based on pentaerythritol triacrylate and pentaerythritol tetraacrylate were synthesized using different compositions of polymerization mixtures and different polymerization conditions. The impact of porogen type and porogen/monomer ratio on the porosity of synthesized monoliths was investigated. Porogen type appears to be the main factor influencing the separating properties of the monolithic sorbent. Using optimal polymerization conditions (porogen type, porogen/monomer ratio, reaction temperature, time etc.) monoliths with a porous structure optimized for polymer separations can be obtained. The monolithic capillary columns containing porous sorbents with optimized porosity are capable of separating 10 to 12 polystyrene standards in one chromatographic run utilizing both size exclusion chromatography and hydrodynamic chromatography separation mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
2015-06-01
[Adv. Funct. Mater. 25(3) , 350-360, (2015)]
An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings.
2015-11-24
[ACS Nano 9 , 10844-51, (2015)]
2015-09-01
[J. Sep. Sci. 38 , 2938-44, (2015)]
Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles.
2015-07-01
[Pharm. Res. 32 , 2280-91, (2015)]
Polyethylene Glycol Coatings on Plastic Substrates for Chemically Defined Stem Cell Culture.
2015-07-15
[Adv. Healthc. Mater. 4 , 1555-64, (2015)]