American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 2014-10-01

The excretion of NaCl and KCl loads in mosquitoes. 1. Control data.

Rebecca M Hine, Matthew F Rouhier, Seokhwan Terry Park, Zhijun Qi, Peter M Piermarini, Klaus W Beyenbach

Index: Am. J. Physiol. Regul. Integr. Comp. Physiol. 307(7) , R837-49, (2014)

Full Text: HTML

Abstract

The handling of Na(+) and K(+) loads was investigated in isolated Malpighian tubules and in whole mosquitoes of Aedes aegypti. Isolated Malpighian tubules bathed in Na(+)-rich Ringer solution secreted Na(+)-rich fluid, and tubules bathed in K(+)-rich Ringer solution secreted K(+)-rich fluid. Upon Na(+) loading the hemolymph, the mosquito removed 77% the injected Na(+) within the next 30 min. The rapid onset and magnitude of this diuresis and the excretion of more Na(+) than can be accounted for by tubular secretion in vitro is consistent with the release of the calcitonin-like diuretic hormone in the mosquito to remove the Na(+) load from the hemolymph. Downstream, K(+) was reabsorbed with water in the hindgut, which concentrated Na(+) in excreted urine hyperosmotic to the hemolymph. Upon K(+) loading the hemolymph, the mosquito took 2 h to remove 100% of the injected K(+) from the hemolymph. The excretion of K(+)-rich isosmotic urine was limited to clearing the injected K(+) from the hemolymph with a minimum of Cl(-) and water. As a result, 43.3% of the injected Cl(-) and 48.1% of the injected water were conserved. The cation retained in the hemolymph with Cl(-) was probably N-methyl-d-glucamine, which replaced Na(+) in the hemolymph injection of the K(+) load. Since the tubular secretion of K(+) accounts for the removal of the K(+) load from the hemolymph, the reabsorption of K(+), Na(+), Cl(-), and water must be inhibited in the hindgut. The agents mediating this inhibition are unknown.Copyright © 2014 the American Physiological Society.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

More Articles...