Recognition of the DNA minor groove by thiazotropsin analogues.
Hasan Y Alniss, Marie-Virginie Salvia, Mykhailo Sadikov, Igor Golovchenko, Nahoum G Anthony, Abedawn I Khalaf, Simon P MacKay, Colin J Suckling, John A Parkinson
Index: ChemBioChem. 15(13) , 1978-90, (2014)
Full Text: HTML
Abstract
Solution-phase self-association characteristics and DNA molecular-recognition properties are reported for three close analogues of minor-groove-binding ligands from the thiazotropsin class of lexitropsin molecules; they incorporate isopropyl thiazole as a lipophilic building block. Thiazotropsin B (AcImPy(iPr) ThDp) shows similar self-assembly characteristics to thiazotropsin A (FoPyPy(iPr) ThDp), although it is engineered, by incorporation of imidazole in place of N-methyl pyrrole, to swap its DNA recognition target from 5'-ACTAGT-3' to 5'-ACGCGT-3'. Replacement of the formamide head group in thiazotropsin A by nicotinamide in AIK-18/51 results in a measureable difference in solution-phase self-assembly character and substantially enhanced DNA association characteristics. The structures and associated thermodynamic parameters of self-assembled ligand aggregates and their complexes with their respective DNA targets are considered in the context of cluster targeting of DNA by minor-groove complexes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]
Functional consequence of the MET-T1010I polymorphism in breast cancer.
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]