Molecular Pharmacology 2015-10-01

Role of Phosphorylation Sites in Desensitization of µ-Opioid Receptor.

Arsalan Yousuf, Elke Miess, Setareh Sianati, Yan-Ping Du, Stefan Schulz, MacDonald J Christie

Index: Mol. Pharmacol. 88 , 825-35, (2015)

Full Text: HTML

Abstract

Phosphorylation of residues in the C-terminal tail of the µ-opioid receptor (MOPr) is thought to be a key step in desensitization and internalization. Phosphorylation of C-terminal S/T residues is required for internalization (Just et al., 2013), but its role in desensitization is unknown. This study examined the influence of C-terminal phosphorylation sites on rapid desensitization of MOPr. Wild-type MOPr, a 3S/T-A mutant (S363A, T370A, S375A) that maintains internalization, 6S/T-A (S363A, T370A, S375A, T376A, T379A, T383A) and 11S/T-A (all C-terminal S/T residues mutated) mutants not internalized by MOPr agonists were stably expressed in AtT20 cells. Perforated patch-clamp recordings of MOPr-mediated activation of G-protein-activated inwardly rectifying potassium channel (Kir3.X) (GIRK) conductance by submaximal concentrations of Met(5)-enkephalin (ME) and somatostatin (SST; coupling to native SST receptor [SSTR]) were used to examine desensitization induced by exposure to ME and morphine for 5 minutes at 37°C. The rates of ME- and morphine-induced desensitization did not correlate with phosphorylation using phosphorylation site-specific antibodies. ME-induced MOPr desensitization and resensitization did not differ from wild-type for 3S/T-A and 6S/T-A but was abolished in 11S/T-A. Morphine-induced desensitization was unaffected in all three mutants, as was heterologous desensitization of SSTR. Morphine-induced desensitization (but not ME) was reduced by protein kinase C inhibition in wild-type MOPr and abolished in the 11S/T-A mutant, as was heterologous desensitization. These findings establish that MOPr desensitization can occur independently of S/T phosphorylation and internalization; however, C-terminal phosphorylation is necessary for some forms of desensitization because mutation of all C-terminal sites (11S/T-A) abolishes desensitization induced by ME. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Osmoregulatory bicarbonate secretion exploits H(+)-sensitive haemoglobins to autoregulate intestinal O2 delivery in euryhaline teleosts.

2014-10-01

[J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 184(7) , 865-76, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.

2014-08-07

[Nanoscale 6(15) , 8720-5, (2014)]

Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.

2014-01-01

[PeerJ 2 , e284, (2014)]

More Articles...