Application of pH-sensitive magnetic nanoparticles microgel as a sorbent for the preconcentration of phenoxy acid herbicides in water samples.
Hadi Tabani, Kamal Khodaei, Yasamin Bide, Farzaneh Dorabadi Zare, Saeed Mirzaei, Ali Reza Fakhari
Index: J. Chromatogr. A. 1407 , 21-9, (2015)
Full Text: HTML
Abstract
Introducing new sorbents is an interesting and debatable issue in the field of sample preparation. In this study, for the first time, a pH-sensitive magnetic nanoparticles microgel, Fe3O4-SiO2-oly(4-vinylpyridine), was introduced as a new sorbent. The operating mechanism of this sorbent is based on changing the pH value of the sample and consequently the structure of this pH-sensitive microgel is changed. So that, at pH 6.0 the microgel was ready to accept and load the analytes (partial swelling), and when the pH was increased to 8.0, the microgel was closed and analytes were trapped inside the sorbent (deswelling). At pH 2.0 the microgel was opened and the analytes were released from the microgel (swelling). As the adsorption and desorption mechanism is based on changing the pH and only aqueous medium is used as the effluent solvent, this method is introduced as a green extraction method. The use of this microgel resulted in excellent figures of merit. The limits of quantitation and detection for herbicides were obtained within the range of 10-30 and 3-10 ng mL(-1), respectively. Finally, the proposed method was successfully applied to determine the concentration of phenoxy acid herbicides as hazardous materials in water samples.Copyright © 2015 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2014-10-01
[J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 184(7) , 865-76, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]
2014-08-07
[Nanoscale 6(15) , 8720-5, (2014)]
Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.
2014-01-01
[PeerJ 2 , e284, (2014)]