Preparation of hybrid soda-lime/quartz glass chips with wettability-patterned channels for manipulation of flow profiles in droplet-based analytical systems.
Zeqing Bai, Qiaohong He, Shanshi Huang, Xianqiao Hu, Hengwu Chen
Index: Anal. Chim. Acta 767 , 97-103, (2013)
Full Text: HTML
Abstract
Profile switching of two-phase flows is often required in microfluidic systems. Manipulation of flow profiles can be realized by control of local surface energy of micro channel through wettability-patterning of channel surface. This article presents a facile approach for wettability-patterning of the micro channels of glass chips. Commercially available octadecyltrichlorosilane (OTS) was used to hydrophobilize the channels via the formation of OTS self-assembly monolayer (SAM), and a UV-source that mainly emits deep UV-light of 254 and 185 nm was employed to degrade the in-channel formed OTS-SAM. The architecture of soda-lime glass/quartz glass hybrid chip was designed to facilitate the deep UV-light effective degrading the OTS-SAM. The established approach, together with the side-by-side laminar-flow patterning technique, was applied to prepare various finely patterned channel networks for different tasks of flow profile switching. The micro device capable of conducting the profile switch from W/O droplets to two separated continuous phases was demonstrated to perform on-chip quick liquid-liquid extraction for the determination of partition coefficients of pharmaceuticals.Copyright © 2013 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2014-10-01
[J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 184(7) , 865-76, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]
2014-08-07
[Nanoscale 6(15) , 8720-5, (2014)]
Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.
2014-01-01
[PeerJ 2 , e284, (2014)]