Environmental Pollution 2014-10-01

Transformation and removal pathways of four common PPCP/EDCs in soil.

L K Dodgen, J Li, X Wu, Z Lu, J J Gan

Index: Environ. Pollut. 193 , 29-36, (2014)

Full Text: HTML

Abstract

Pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) enter the soil environment via irrigation with treated wastewater, groundwater recharge, and land application of biosolids. The transformation and fate of PPCP/EDCs in soil affects their potential for plant uptake and groundwater pollution. This study examined four PPCP/EDCs (bisphenol A, diclofenac, naproxen, and 4-nonylphenol) in soil by using (14)C-labeling and analyzing mineralization, extractable residue, bound residue, and formation of transformation products. At the end of 112 d of incubation, the majority of (14)C-naproxen and (14)C-diclofenac was mineralized to (14)CO2, while a majority of (14)C-bisphenol A and (14)Cnonylphenol was converted to bound residue. After 112 d, the estimated half-lives of the parent compounds were only 1.4-5.4 d. However a variety of transformation products were found and several for bisphenol A and diclofenac were identified, suggesting the need to consider degradation intermediates in soils impacted by PPCP/EDCs. Copyright © 2014 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

2015-12-15

[Biosens. Bioelectron. 74 , 830-5, (2015)]

Effects of Endocrine Disruptor Compounds, Alone or in Combination, on Human Macrophage-Like THP-1 Cell Response.

2015-01-01

[PLoS ONE 10 , e0131428, (2015)]

Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry.

2015-11-27

[J. Chromatogr. A. 1422 , 230-8, (2015)]

Comparative evaluation of the efficiency of low-cost adsorbents and ligninolytic fungi to remove a combination of xenoestrogens and pesticides from a landfill leachate and abate its phytotoxicity.

2015-01-01

[J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 50 , 958-70, (2015)]

Derivatization of bisphenol A and its analogues with pyridine-3-sulfonyl chloride: multivariate optimization and fragmentation patterns by liquid chromatography/Orbitrap mass spectrometry.

2015-08-30

[Rapid Commun. Mass Spectrom. 29 , 1473-84, (2015)]

More Articles...