Corrole and nucleophilic aromatic substitution are not incompatible: a novel route to 2,3-difunctionalized copper corrolates.
M Stefanelli, F Mandoj, S Nardis, M Raggio, F R Fronczek, G T McCandless, K M Smith, R Paolesse
Index: Org. Biomol. Chem. 13 , 6611-8, (2015)
Full Text: HTML
Abstract
The insertion of a -NO2 group onto the corrole framework represents a key step for subsequent synthetic manipulation of the macrocycle based on the chemical versatility of such a functionality. Here we report results of the investigation of a copper 3-NO2-triarylcorrolate in nucleophilic aromatic substitution reactions with "active" methylene carbanions, namely diethyl malonate and diethyl 2-chloromalonate. Although similar reactions on nitroporphyrins afford chlorin derivatives, nucleophilic attack on carbon-2 of corrole produces 2,3-difunctionalized Cu corrolates in acceptable yields (ca. 30%), evidencing once again the erratic chemistry of this contracted porphyrinoid.
Related Compounds
Related Articles:
2015-05-01
[J. Virol. 89(9) , 4918-31, (2015)]
2015-01-01
[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]
2015-01-01
[Nucleic Acids Res. 42(18) , 11433-46, (2014)]
The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.
2014-10-01
[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]
2014-09-01
[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]