Langmuir 2015-04-07

Influence of lipid coatings on surface wettability characteristics of silicone hydrogels.

M Saad Bhamla, Walter L Nash, Stacey Elliott, Gerald G Fuller

Index: Langmuir 31(13) , 3820-8, (2015)

Full Text: HTML

Abstract

Insoluble lipids serve vital functions in our bodies and interact with biomedical devices, e.g., the tear film on a contact lens. Over a period of time, these naturally occurring lipids form interfacial coatings that modify the wettability characteristics of these foreign synthetic surfaces. In this study, we examine the deposition and consequences of tear film lipids on silicone hydrogel (SiHy) contact lenses. We use bovine meibum, which is a complex mixture of waxy esters, cholesterol esters, and lipids that is secreted from the meibomian glands located on the upper and lower eyelids of mammals. For comparison, we study two commercially available model materials: dipalmitoylphosphatidylcholine (DPPC) and cholesterol. Upon deposition, we find that DPPC and meibum remain closer to the SiHy surface than cholesterol, which diffuses further into the porous SiHy matrix. In addition, we also monitor the fate of unstable thin liquid films that consequently rupture and dewet on these lipid-decorated surfaces. This dewetting provides valuable qualitative and quantitative information about the wetting characteristics of these SiHy substrates. We observe that decorating the SiHy surface with simple model lipids such as DPPC and cholesterol increases the hydrophilicity, which consequently inhibits dewetting, whereas meibum behaves conversely.


Related Compounds

Related Articles:

A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

2015-05-01

[J. Virol. 89(9) , 4918-31, (2015)]

Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response.

2015-01-01

[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.

2014-10-01

[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]

The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184.

2014-09-01

[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]

More Articles...