Connecting inflammation with glutamate agonism in suicidality.
Sophie Erhardt, Chai K Lim, Klas R Linderholm, Shorena Janelidze, Daniel Lindqvist, Martin Samuelsson, Kristina Lundberg, Teodor T Postolache, Lil Träskman-Bendz, Gilles J Guillemin, Lena Brundin
Index: Biol. Psychiatry 38(5) , 743-52, (2013)
Full Text: HTML
Abstract
The NMDA-receptor antagonist ketamine has proven efficient in reducing symptoms of suicidality, although the mechanisms explaining this effect have not been detailed in psychiatric patients. Recent evidence points towards a low-grade inflammation in brains of suicide victims. Inflammation leads to production of quinolinic acid (QUIN) and kynurenic acid (KYNA), an agonist and antagonist of the glutamatergic N-methyl-D-aspartate (NMDA) receptor, respectively. We here measured QUIN and KYNA in the cerebrospinal fluid (CSF) of 64 medication-free suicide attempters and 36 controls, using gas chromatography mass spectrometry and high-performance liquid chromatography. We assessed the patients clinically using the Suicide Intent Scale and the Montgomery-Asberg Depression Rating Scale (MADRS). We found that QUIN, but not KYNA, was significantly elevated in the CSF of suicide attempters (P<0.001). As predicted, the increase in QUIN was associated with higher levels of CSF interleukin-6. Moreover, QUIN levels correlated with the total scores on Suicide Intent Scale. There was a significant decrease of QUIN in patients who came for follow-up lumbar punctures within 6 months after the suicide attempt. In summary, we here present clinical evidence of increased QUIN in the CSF of suicide attempters. An increased QUIN/KYNA quotient speaks in favor of an overall NMDA-receptor stimulation. The correlation between QUIN and the Suicide Intent Scale indicates that changes in glutamatergic neurotransmission could be specifically linked to suicidality. Our findings have important implications for the detection and specific treatment of suicidal patients, and might explain the observed remedial effects of ketamine.
Related Compounds
Related Articles:
The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.
2015-10-01
[Cell Death Differ. 22 , 1618-29, (2015)]
2015-01-01
[J. Neuroinflammation 12 , 110, (2015)]
Age-related reference values for urinary organic acids in a healthy Turkish pediatric population.
1994-06-01
[Clin. Chem. 40(6) , 862-6, (1994)]
Chemical genetics reveals a complex functional ground state of neural stem cells.
2007-05-01
[Nat. Chem. Biol. 3(5) , 268-273, (2007)]
Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.
2009-02-12
[Nature 457(7231) , 910-4, (2009)]